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Abstract
Introducing p − 1 new parameters into the multilinear relations, we extend the
standard unitary parasupersymmetry algebra of order p so that by embedding
the quantum solvable models possessing gl(2, c) Lie algebra symmetry into
it, the partitions of integer numbers p − 1 and 1

2p(p − 1) are established.
These two partitions are performed by the new parameters and the product
of new parameters with their labels, respectively. The former partition is just
necessary for the real form h4; however, both of them are essential for the real
forms u(2) and u(1, 1). By occupying these parameters with arbitrary values,
the energy spectra are determined by the mean value of proposed parameters
for the real form h4 with their label weight function as well as for the real forms
u(2) and u(1, 1) with the weight function of their squared label. So for the
given energies, the multilinear behaviour of parasupercharges is not specified
uniquely by varying the new parameters continuously.

PACS numbers: 02.20.−a, 02.20.Sv, 03.65.Fd, 03.65.Ge, 12.39.St

1. Introduction and motivation

In the last decades, the different quantum statistics have been widely investigated. In the three
and higher dimensional spaces, parafermion and paraboson statistics have been introduced
as extensions of the usual Fermi and Bose statistics [1–7]. Contrary to the usual Fermi and
Bose statistics which describe one-dimensional representations of the permutation groups,
parafermion and paraboson statistics describe higher dimensional representations of the same
groups. Explanation of the symmetry between Fermions and bosons by supersymmetry
(SUSY) [8–10] led to the natural question about the generalization of SUSY to statistics with
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the presence of Fermions and parabosons, parafermions and bosons as well as parafermions
and parabosons.

To join the parastatistics (generalized statistics) and SUSY theories together in the
framework of a unified theory in relation to the non-relativistic quantum mechanics the so-
called parasupersymmetry (PSUSY), Beckers and Debergh [11, 12] proposed a superposition
of the (para)bosonic Hamiltonian and the parafermionic Hamiltonian of order p = 2, and then
their algebra for bosons and parafermions was also generalized to the arbitrary order p [13].
Rubakov and Spiridonov proposed a different PSUSY algebra for describing the symmetry
between bosons and parafermions of order p = 2 [14]. Afterwards, Khare generalized the
PSUSY of order 2 to the arbitrary order p [15–17]. In the realization of PSUSY by the shape
invariant quantum solvable models such as simple harmonic oscillator, three-dimensional
oscillator, Morse, Scarf I, Scarf II, generalized Pöschl–Teller and Natanzon potentials [18]
as well as the quantum solvable models with symmetry of real forms of gl(2, c) Lie algebra
like the Landau levels problem on the flat surface with symmetry of Heisenberg Lie algebra
h4, and the motion of a charged particle on the two-dimensional sphere in the presence or
absence of a magnetic monopole [19, 20], the Rubakov–Spiridonov–Khare (RSK) algebra
has been much more successful than the Beckers and Debergh algebra. For this reason, the
symmetry between bosons and parafermions of order p (with p = 1, 2, . . .) has attracted
much attention and consequently the RSK symmetry model has been the so-called standard
PSUSY. In the usual supersymmetric quantum mechanics, there are two isospectral partner
potentials, and symmetry generators satisfy the structural relations with bilinear products.
However, in the PSUSY quantum mechanics, there are the hierarchy of p+1 Hamiltonian with
isospectral potentials and multilinear relations including the product of p+1 parasupercharges.
Supercharge operators are nilpotent of order 2, while parasupercharges are the nilpotent
operators of order p + 1. Contrary to the SUSY, in general case of the arbitrary order PSUSY,
the expression of the bosonic Hamiltonian in terms of parasupercharges is not directly possible.

Here, we propose an extension of RSK unitary PSUSY algebra which is realized by all
quantum models containing the gl(2, c) Lie algebra symmetry and not by the approach of
shape invariance symmetry for the models. The symmetries of gl(2, c) Lie algebra have been
generally discussed for the two- and three-dimensional quantum solvable models. But the
shape invariance symmetry has been used for the one-dimensional quantum solvable models.
Meanwhile in the Lie algebra symmetries, the laddering generators are independent of the
representation space parameters which is in contrast to the shape invariance case. For this
reason, the proposed PSUSY in this paper is not realized by the models possessing shape
invariance symmetry. But this does not mean that one-dimensional solvable shape-invariant
models cannot realize the proposed new PSUSY. Since regarding the following two references,
it appears that the quantum states of one-dimensional solvable models can also represent real
forms of gl(2, c). In [21, 22], a different mathematical method has been used through which
the Lie algebras su(2) and su(1, 1) can also be represented by the quantum states of the
one-dimensional solvable models such as Morse and Pöschl–Teller potentials. This method
can be substituted instead of the traditional factorization method in which the hierarchy of
one-dimensional partner potentials is expressed in terms of the hierarchy of superpotentials.
So, in addition to the two- and three-dimensional models possessing the symmetries of su(2)

and su(1, 1) Lie algebras, the extended PSUSY algebra proposed in this paper will be realized
by the one-dimensional quantum solvable models with the same symmetries. It is also
worth mentioning that some other different approaches to the PSUSY have been suggested
[23, 24].

This paper has been organized as follows. In section 2 we extend the standard PSUSY
algebra of arbitrary order p with new parameters such that the unitarity structure of the algebra
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is not violated and the well-known RSK algebra becomes a special case of the extended
algebra. In section 3 we will have a short review on the three different real forms of gl(2, c)

Lie algebra and point out their differences in connection with the structure constants and
their representation spaces. It is evident that the representation spaces can be the space of
quantum states corresponding to the physical solvable models. In section 4 we introduce the
parafermionic operators in terms of the raising and lowering generators of the gl(2, c) complex
Lie algebra. We also define the bosonic operator as a diagonal matrix whose elements are
expressed in terms of the four generators of gl(2, c). Then, we shall demand the realization
of the algebraic relations of the extended PSUSY. It is shown that the real form h4 causes the
integer number p−1 to be partitioned into at most p−1 real parts by the proposed parameters
which are not equal to each other necessarily. In addition to the mentioned partition, for
the two real forms u(2) and u(1, 1) it is necessary the integer number p(p − 1)/2 to be
partitioned into at most p−1 real parts by the product of proposed parameters and their labels.
So for determining the energy spectrum of the system, we will have different multilinear
behaviour of parafermions with p − 2 or p − 3 degrees of freedom. For h4 (and h3) in case
p = 2, as well as for u(2) and u(1, 1) in cases p = 2 and 3, the extended PSUSY algebra is
automatically reduced to the RSK standard PSUSY. In section 5 we introduce the eigenvalue
equations hierarchy of isospectrum Hamiltonians using the representation space of the
quantum states of every real forms, separately. Finally, section 6 is devoted to the concluding
remarks.

2. Towards the extension of standard unitary PSUSY algebra

Now, we extend the RSK standard PSUSY for the parasupercharge operators Q and Q† and
the bosonic operator H as

QpQ† + βp−1Q
p−1Q†Q + βp−2Q

p−2Q†Q2 + · · · + β1QQ†Qp−1 + Q†Qp = 2pQp−1H

(1a)

Q†pQ + β1Q
†p−1

QQ† + β2Q
†p−2

QQ†2
+ · · · + βp−1Q

†QQ†p−1
+ QQ†p = 2pQ†p−1

H

(1b)

Qp+1 = Q†p+1 = 0 (1c)

[H,Q] = [H,Q†] = 0, (1d)

where β1, β2, . . . , βp−1 are real constants through which the number p − 1 is partitioned into
p − 1 real parts that are not equal to each other necessarily:

�
p−1
k=1 βk = p − 1. (2)

The real parameters βk can take non-integer values as well. One can verify that not only
relations (1c) and (1d) are separately closure with respect to the Hermitian conjugation but
also the new multilinear parts (1a) and (1b) are Hermitian conjugate of each other. Hence,
the new PSUSY is unitary. Note that in the p = 1 case, which is the well-known SUSY, it
is not necessary to introduce the parameters βk since all of them are zero which is consistent
with (2). When β1 = β2 = · · · = βp−1 = 1, relations (1a), (1b), (1c) and (1d) are
reduced to the RSK standard PSUSY algebra, and relation (2) is also satisfied. Now we
focus on the realization of the extended PSUSY algebra by the quantum solvable models
which have the symmetry of gl(2, c) Lie algebra. One may follow the h3 Heisenberg algebra
approach of the simple harmonic oscillator to the realization of relations (1) via using the
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techniques presented in this paper for the h4 Heisenberg algebra [25]. The mathematical
procedure in embedding all of the real forms of the gl(2, c) Lie algebra into the PSUSY
algebra (1) leads to the fact that the integer number p − 1 must be partitioned into p − 1 real
parts by β1, β2, . . . , βp−1 in according to (2). For these new parameters, if we define two
mean values with their label weight function and the weight function of their squared label,
respectively as

β̄ := �
p−1
k=1 kβk

p(p − 1)/2
(3)

¯̄β := �
p−1
k=1 k2βk

p(p − 1)(2p − 1)/6
, (4)

then for embedding u(2) and u(1, 1) Lie algebras into the PSUSY algebra (1), β̄ must be equal
to 1. Also, the eigenvalues corresponding to the components of the bosonic Hamiltonian H
are described in terms of β̄ for the h4 case and ¯̄β for the u(2) and u(1, 1) cases. Thus in the
cases of u(2) and u(1, 1) in addition to partition (2) it is necessary that the integer number
p(p−1)

2 is partitioned into p − 1 real parts by the product of new parameters βk and their labels.
The products kβk are not equal to each other necessarily. If we demand a unit value for β̄

and ¯̄β which is hold for the standard PSUSY then, the realization of the extended PSUSY by
h4, u(2) and u(1, 1) requires that the number of free parameters becomes p − 3, p − 4 and
p − 4, respectively. Therefore, in addition to the realization of the extended PSUSY by the
real forms of gl(2, c) Lie algebra, one may follow the statistical description via occupation of
different algebraic modes. In fact the parameters βk can continuously vary so that for the h4

case only constraint (2), and for the u(2) and u(1, 1) cases both constraints (2) and β̄ = 1 are
satisfied. So by this way, the different algebraic modes which are continuously distinguished
from each other, are occupied. The occupation of different values for the free parameters
βk not only does not have any effect on the energy of the bosonic Hamiltonian H, but also
proposes different algebraic multilinear relations with the same physical results. The standard
PSUSY is one of these occupied modes.

3. A short review of gl(2, c) Lie algebra

The most general form of the commutation relations of four generators corresponding to the
gl(2, c) Lie algebra in the Cartan bases is given by

[L+, L−] = aL3 + b (5a)

[L3, L±] = ±L± (5b)

[1, L+] = [1, L−] = [1, L3] = 0, (5c)

where L+ and L− are the raising and lowering operators of the indices of the bases of the
representation space, respectively. Moreover, a and b are the real structure constants. This
Lie algebra has six real forms including u(2), u(1, 1), h4, su(2) ⊕ u(1), su(1, 1) ⊕ u(1) and
iso(2) ⊕ u(1), and they are obtained from (5) for a > 0 and b �= 0, a < 0 and b �= 0, a = 0
and b �= 0, a > 0 and b = 0, a < 0 and b = 0, and a = b = 0, respectively. Note that the
second three of them are a decomposition of the first three of them and can be obtained by
choosing b = 0. So without missing the generality of the discussions, we shall consider only
u(2), u(1, 1) and h4 Lie algebras.



Quantum solvable models with gl(2, c) Lie algebra symmetry 5515

An unitary and irreducible representation of u(2) Lie algebra with a = 2 and b = integer
can be introduced by the bases |l, m〉 in which m is run as −l − b � m � l:

L+|l, m − 1〉 =
√

(l − m + 1)(l + m + b)|l, m〉 (6a)

L−|l, m〉 =
√

(l − m + 1)(l + m + b)|l, m − 1〉 (6b)

L3|l, m〉 = m|l, m〉 (6c)

1|l, m〉 = |l, m〉. (6d)

It must be emphasized that l � − 1
2 (1 + b). According to (6a) and (6b), |l, l〉 and |l,−l − b〉

are the highest and lowest bases, respectively. The representation bases are equipped with an
inner product so that they are orthonormal with respect to it i.e. 〈l, m|l, m′〉 = δmm′ . Thus,
they constitute a Hilbert space with finite dimension 2l + 1 + b as H(l)

u(2) = span{|l, m〉}−l−b
m=l .

The operators L+ and L− are Hermitian conjugate of each other with respect to the inner
product, that is, 〈l, m|L+|l, m′〉 = 〈l, m′|L−|l, m〉∗ and the operator L3 is Hermitian:
〈l, m|L3|l′,m〉 = 〈l′,m|L3|l, m〉∗.

For u(1, 1) Lie algebra when a = −2 and b = integer, the discrete unitary irreducible
representations D+

(
m + b

2 + 1
2

)
with m � 0 and D+

(−m + b
2 + 1

2

)
with m � 0 are introduced

by the bases |l, m〉 with l � |m| + b
2 + 1

2 as

L+|l − 1,m〉 =
√(

l − m − b

2
− 1

2

) (
l + m − b

2
− 1

2

)
|l, m〉 (7a)

L−|l, m〉 =
√(

l − m − b

2
− 1

2

)(
l + m − b

2
− 1

2

)
|l − 1,m〉 (7b)

L3|l, m〉 = l|l, m〉 (7c)

1|l, m〉 = |l, m〉. (7d)

These representations have the lowest bases
∣∣m + b

2 + 1
2 ,m

〉
and

∣∣−m + b
2 + 1

2 ,m
〉
, respectively.

The infinite-dimensional Hilbert space H(m)

u(1,1) = span{|l, m〉}l�|m|+ b
2 + 1

2
is equipped with an

inner product such that the bases are orthonormal with respect to it as 〈l, m|l′,m〉 = δll′ . Once
again, the operators L+ and L− are Hermitian conjugate of each other i.e. 〈l, m|L+|l′,m〉 =
〈l′,m|L−|l, m〉∗ and the operator L3 is Hermitian, that is, 〈l, m|L3|l′,m〉 = 〈l′,m|L3|l, m〉∗.

The h4 Lie algebra with b > 0 and a = 0 has a unitary and irreducible representation
through the bases |l, m〉 with the restriction m � l for the non-negative integer l:

L+|l, m − 1〉 =
√

(l − m + 1)b|l, m〉 (8a)

L−|l, m〉 =
√

(l − m + 1)b|l, m − 1〉 (8b)

L3|l, m〉 = m|l, m〉 (8c)

1|l, m〉 = |l, m〉, (8d)

where |l, l〉 is the highest base. There exists an inner product so that the representation bases
are orthonormal with respect to it as 〈l, m|l, m′〉 = δmm′ . So, these bases constitute a finite-
dimensional Hilbert space as H(l)

h4
= span{|l, m〉}m�l . As before, the operators L+ and L−

are Hermitian conjugate of each other with respect to the inner product and the operator L3

is Hermitian. It must be emphasized that in the Hilbert spaces H(l)

u(2),H
(m)

u(1,1) and H(l)
h4

, the
kets |l, m〉 may be the quantum states corresponding to the solvable models containing the
symmetries of u(2), u(1, 1) and h4 Lie algebras, respectively.
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4. Realization of extended PSUSY by gl(2, c) Lie algebra

Introducing the parafermionic operators Q and Q† in terms of the generators L− and L+,
and defining the bosonic operator H as a diagonal matrix in terms of p + 1 Hamiltonians
H1,H2, . . . , Hp+1:

(Q)ij = L−δi+1j , (Q†)ij = L+δij+1, (H)ij = Hiδij , i, j = 1, 2, . . . , p + 1, (9)

the nilpotent equations (1c) are automatically satisfied for the operators Q and Q†. The
commutation relations of the parafermionic operators with the bosonic operator i.e. (1d) for
i = 1, 2, . . . , p give

HiL− = L−Hi+1 (10a)

Hi+1L+ = L+Hi. (10b)

Considering definitions (9), it is seen that the parafermionic operators Q and Q† are actually
Hermitian conjugate of each other. For components of the Hermitian bosonic operator, the
following explicit forms in terms of the generators of gl(2, c) Lie algebra are proposed as

Hi = 1
2 (L−L+ + diL3 + ei) i = 1, 2, . . . , p (11a)

Hp+1 = 1
2 (L+L− + dp+1L3 + ep+1), (11b)

where di and ei are constants which can be determined by satisfying relations (10a), (10b),
(1a) and (1b). Substituting the proposed relations (11a) and (11b) in equation (10a), the
following recursion relations are imposed on the constants di and ei :

di+1 = di + a i = 1, 2, . . . , p − 1 (12a)

ei+1 = ei − di + b i = 1, 2, . . . , p − 1 (12b)

dp+1 = dp (12c)

ep+1 = ep − dp. (12d)

Clearly in order to obtain the above results, the commutation relations corresponding to the
Lie algebra gl(2, c) have been used. Note that if we use (10b) instead of (10a) then, the above
results are deduced. Using (12c) and repeated applications of (12a) yields

di = d1 + (i − 1)a i = 1, 2, . . . , p (13a)

dp+1 = d1 + (p − 1)a. (13b)

Applying (13a) and (12d) along with repeated application of (12b), we have

ei = −a

2
(i − 1)(i − 2) + (i − 1)(b − d1) + e1 i = 1, 2, . . . , p (14a)

ep+1 = −a

2
p(p − 1) + (p − 1)b − pd1 + e1. (14b)

Hence by accepting results (13a), (13b), (14a) and (14b), equations (1d) are satisfied. The
coefficients d1 and e1 are determined through satisfaction of relations (1a) and (1b), and we
shall show that they are functions of the parameters β1, β2, . . . , βp−1 via β̄ and ¯̄β.
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The first and second parts of the following equations are obtained from substituting (9) in
(1a) and (1b), respectively:

L
p
−L+ + �

p−1
k=1 βp−kL

p−k
− L+L

k
− = 2pL

p−1
− Hp (15a)

�
p−1
k=1 βp−kL

p−k
− L+L

k
− + L+L

p
− = 2pL

p−1
− Hp+1 (15b)

�
p−1
k=1 βkL

p−k
+ L−Lk

+ + L−L
p
+ = 2pL

p−1
+ H1 (15c)

L
p
+L− + �

p−1
k=1 βkL

p−k
+ L−Lk

+ = 2pL
p−1
+ H2. (15d)

One may obtain the following relation after repeated application of the commutation relations
(5a) and (5b):

L
p−k
± L∓Lk

± = L
p
±L∓ ∓ akL

p−1
± L3 − k

2
[(k − 1)a + 2b]Lp−1

± k = 0, 1, 2, . . . , p. (16)

Now by substituting the explicit form of H1 and using the first relation of (16) in (15c), it
appears that if we use (2) then, the coefficients of the terms possessing L

p
+L− on the both sides

will automatically become equal to each other. Comparing separately the coefficients of the
expressions L

p−1
+ L3 and L

p−1
+ on the both sides, we obtain the constants d1 and e1 in terms of

the structure constants a and b as well as two parameters β̄ and ¯̄β as follow:

d1 = −a

2
(p − 1)β̄ (17a)

e1 = (p − 1)

2

[
a

(
β̄

2
− 2p − 1

6
¯̄β − 1

)
− bβ̄

]
. (17b)

Finally, by using equations (13a), (13b), (14a) and (14b), all of the constants d1, d2, . . . , dp+1

and e1, e2, . . . , ep+1 are determined as

di = −a

2
(p − 1)β̄ + a(i − 1) i = 1, 2, . . . , p (18a)

dp+1 = dp = −a

2
(p − 1)β̄ + a(p − 1) (18b)

ei = a

2
(p − 1)

[(
i − 1

2

)
β̄ − 2p − 1

6
¯̄β − 1

]
− a

2
(i − 1)(i − 2)

+ b(i − 1) − b

2
(p − 1)β̄ i = 1, 2, . . . , p (18c)

ep+1 = −a

2
(p − 1)

(
p + 1 − 2p + 1

2
β̄ +

2p − 1

6
¯̄β

)
+ b(p − 1)

(
1 − β̄

2

)
. (18d)

We shall show that for consistency of the above results with relations (1a) and (1b), we must
choose β̄ = 1 when a �= 0.

Although we have obtained the required results however, still relations (15a), (15b) and
(15d) must be satisfied. In what follows we first check the satisfaction of (15d). Regarding
the previous results, one may obtain

H2 = H1 +
a

2
L3 +

b

2
+

a

4
(p − 1)β̄. (19)

By using (19) on the right-hand side of (15d) and then applying (15c) in the obtained result,
it is known that (15d) is automatically satisfied for a = 0. Also for a �= 0, it is necessary to
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impose the following extra constraint on the real parameters β1, β2, . . . , βp−1:

β̄ = 1 for a �= 0. (20)

Considering relations (2) and (20) for dynamical symmetry groups U(2) and U(1, 1), it can
be shown that in the cases p = 2 and 3 we have β1 = 1 and β1 = β2 = 1 respectively, and
consequently the extended PSUSY algebra is reduced to the RSK standard PSUSY. Thus in
the cases u(2) and u(1, 1), the extension of PSUSY is automatically accomplished for p � 4.
In the second stage, it is investigated that how the final results i.e. relations (18) and (20)
can lead to the satisfaction of (15b). Using the second equation of (16), the left-hand side of
relation (15b) becomes

�
p−1
k=1 βp−kL

p−k
− L+L

k
− + L+L

p
− = (

1 + �
p−1
k=1 βk

)
L

p
−L+ + a

(
p + �

p−1
k=1 kβp−k

)
L

p−1
− L3

−
[
a�

p−1
k=1

k(k − 1)

2
βp−k + a

p(p − 1)

2
− b�

p−1
k=1 kβp−k − bp

]
L

p−1
− . (21)

We substitute the explicit form of Hp+1 on the right-hand side of (15b), and then the generators
are put in order like (26) using the commutation relations of gl(2, c) Lie algebra. Now, the
obtained result is compared with (26), then it appears that with accepting only (2), the known
results (18b) and (18d) are obtained for dp+1 and ep+1, respectively. So, relation (15b) is also
satisfied. To complete our considerations of the realization of the extended PSUSY (1), in the
third and final stage, we must make sure that (15a) is also satisfied. It is easily seen that the
commutation relations of gl(2, c) Lie algebra give

Hp = Hp+1 − a

2
L3 +

a

2
(p − 1)

(
1 − β̄

2

)
− b

2
. (22)

Using (22) on the right-hand side of (15a) and imposing (15b) in it as well, then from
equation (18) we find that relation (15a) is automatically satisfied for a = 0. Furthermore,
when a �= 0, one have to accept constraint (20) again for the parameters β1, β2, . . . , βp−1.

The satisfaction of four relations (15a), (15b), (15c) and (15d) causes a question in
connection with the unitarity of our realization from PSUSY. Indeed, it seems that only
realization of relations (15a) and (15d) for a �= 0 requires to accept constraint (20). On the
other hand, one may check that the left-hand sides of relations (15a) and (15c) are Hermitian
conjugate of each other as well as the left-hand sides of (15b) and (15d). Moreover, from
repeated application of the commutation relations of gl(2, c) Lie algebra together with using
(18a), (18b), (18c) and (18d), we get

HpL
p−1
+ = L

p−1
+ H1 (23a)

Hp+1L
p−1
+ = L

p−1
+ H2. (23b)

The above relations show that the right-hand sides of (15a) and (15c) as well as of (15b) and
(15d) are Hermitian conjugate of each other. So, equations (15a) and (15c) are Hermitian
conjugate of each other. The same fact is hold for (15b) and (15d). Therefore, the unitary
structure of the theory requires that constraint (20) when a �= 0 is hold for the satisfaction of
not only (15a) and (15d) but also (15b) and (15c). In fact, one can put in order the generators
of gl(2, c) Lie algebra on the both sides of equations (15b) and (15c) such that constraint (20)
is concluded. Using (18a), constraint (20) when a �= 0 leads to

�
p

i=1di = 0. (24)

Note that for a = 0, relation (24) is automatically hold without satisfaction of constraint (20).
This means that for a dynamical symmetry group H4 (as well as H3) in case p = 3, one of the
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parameters β1 and β2 is free, and consequently the extension of PSUSY is accomplished for
p � 3. So, relation (24) could be considered as a necessary condition for the unitarity of the
new PSUSY. There is a similar condition for the standard PSUSY as well [17, 19]. Also, we
have

�
p

i=1ei = −a

12
p(p − 1)(2 − p + (2p − 1) ¯̄β) for a �= 0 (25a)

�
p

i=1ei = b

2
p(p − 1)(1 − β̄) for a = 0. (25b)

Result (25a) is independent of the structure constant b such as the situation in the
standard PSUSY. Meanwhile, in the standard case, constraint (20) is automatically hold
and, consequently expression (25b) vanishes which is the well-known unitary condition of
the standard PSUSY algebra for the shape invariant models. For a = 0, the reason for doing
this comparison is the fact that one may use the formulation of this paper for the simple
harmonic oscillator algebra h3 which is also a one-dimensional shape invariant model. Using
results (18), the familiar relations of the standard PSUSY between solvable Hamiltonians
H1,H2,H3, . . . , Hp+1 as independent of the parameters β1, β2, . . . , βp−1 may again be found:

Hi+1 = Hi +
b

2
for h4(and h3) (26a)

Hi+1 = Hi +
a

2
L3 +

a

4
(p − 2i + 1) +

b

2
for u(2) and u(1, 1). (26b)

This verifies that the solvable Hamiltonians with dynamical symmetry groups H4 (and H3),
U(2) and U(1, 1) realize the extended PSUSY algebra. Therefore, the dynamical symmetry
groups with their corresponding Lie algebras as h4 (and h3) as well as u(2) and u(1, 1)

are embedded into non-unique PSUSY algebras with arbitrary orders p � 3 and p � 4,
respectively.

5. Isospectrum Hamiltonians in the representation spaces of u(2), u(1, 1) and h4

Now we can construct isospectrum Hamiltonians for each of the quantum states spaces
H(l)

u(2),H
(m)

u(1,1) and H(l)
h4

which are the representation spaces of their corresponding Lie algebras
with the commutation relations (5a), (5b) and (5c) for the cases a = 2, a = −2 and a = 0,
respectively. Using the representations of these algebras by their Hilbert spaces given by
relations (6), (7) and (8), we obtain the following eigenvalue equations for p + 1 Hamiltonians
H1,H2, . . . , Hp+1 given in (11a) and (11b):

Hm|l, m − 1〉 = Eu(2)(l, p, ¯̄β)|l, m − 1〉 m = 1, 2, . . . , p + 1 (27a)

Hl|l − 1,m〉 = Eu(1,1)(m, p, ¯̄β)|l − 1,m〉 l = 1, 2, . . . , p + 1 (27b)

Hm|l, m − 1〉 = Eh4(l, p, β̄)|l, m − 1〉 m = 1, 2, . . . , p + 1, (27c)

in which the spectra are independent of m, l and m, respectively:

Eu(2)(l, p, ¯̄β) = 1

2

[
l2 − 1

2
(1 + b)(p − 2l − 1) − (p − 1)(2p − 1)

¯̄β

6

]
(28a)

Eu(1,1)(m, p, ¯̄β) = 1

2

[
b2 − 1

4
− m2 +

p

2
(1 − b) + (p − 1)(2p − 1)

¯̄β

6

]
(28b)
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Eh4(l, p, β̄) = b

[
l − (p − 1)

β̄

2

]
. (28c)

The above relations, that in their proofs we have used (18a), (18b), (18c) and (18d), have
differences as well as similarities with each others. The dimension of the representation space
H(l)

u(2) is finite since the u(2) Lie algebra is compact. So, the order of the PSUSY algebra,
say, p must obey the restriction p � l with the assumption b > 0. In other words in the
Hilbert representation space H(l)

u(2), one can construct at most l + 1 isospectrum Hamiltonians.

Although the Hilbert representation spaces H(m)

u(1,1) and H(l)
h4

are infinite-dimensional spaces
however, for the former with the assumption b � −1 − 2|m|, the number of isospectrum
Hamlitonians which is p + 1 dose not have any restriction. But for the latter, at most l + 1
isospectrum Hamiltonians can be constructed once again. For the representation spaces H(l)

u(2)

and H(m)

u(1,1) that a �= 0 in their commutation relations, both of their spectra are functions of
¯̄β (in both cases β̄ must be equal to one). However, the spectrum corresponding to H(l)

h4
for

which a = 0, is a function of β̄.
It is evident that for the spectra of u(2) and u(1, 1), ¯̄β is a function of p−3 free parameters;

however, for the spectrum of h4, β̄ is a function of p − 2 free parameters:

¯̄β = 3(3p − 4)

p(2p − 1)
+

�
p−1
k=3 (k − 1)(k − 2)βk

p(p − 1)(2p − 1)/6
(29a)

β̄ = 2

p
+

�
p−1
k=2 (k − 1)βk

p(p − 1)/2
. (29b)

In standard PSUSY, we have β1 = β2 = · · · = βp−1 = 1, so the quantities ¯̄β and β̄ are equal
to unit. Hence, the physical results (27) and (28) are actually reduced to the physical results of
the standard PSUSY. Clearly, if we demand the given values for ¯̄β and β̄ then, the number of
free parameters will be reduced to p − 4 and p − 3, respectively. Thus, apart from obtaining
the physical results similar to the standard PSUSY case, we can use the extra free parameters
in order to develop the embedding of the gl(2, c) Lie algebra into the PSUSY algebra which
will be discussed in the following section.

Theoretically, the magnetic monopole problem has attracted very much attention, since
its wavefunctions can be calculated exactly via the dynamical symmetry group SU(2). Here,
as a physical application of the extension, we briefly consider how the extended PSUSY can
be realized by su(2)-generators of the magnetic monopole model. The angular momentum
operators (as example see [26, 27])

LN
± = e±iφ

(
± ∂

∂θ
+ i cot θ

∂

∂φ
− q

1 − cos θ

sin θ

)
LN

3 = −i
∂

∂φ
− q (30a)

LS
± = e±iφ

(
± ∂

∂θ
+ i cot θ

∂

∂φ
− q

1 + cos θ

sin θ

)
LS

3 = −i
∂

∂φ
+ q, (30b)

which satisfy the following commutation relations:[
LN(S)

+ , L
N(S)
−

] = 2L
N(S)
3 ,

[
L

N(S)
3 , L

N(S)
±

] = ±L
N(S)
± , (31)

represent su(2) Lie algebra via monopole harmonics Y
N(S),q

lm (θ, φ) as

LN(S)
+ Y

N(S),q

lm (θ, φ) =
√

(l + m + 1)(l − m)Y
N(S),q

lm+1 (θ, φ) (32a)
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L
N(S)
− Y

N(S),q

lm (θ, φ) =
√

(l − m + 1)(l + m)Y
N(S),q

lm−1 (θ, φ) (32b)

L
N(S)
3 Y

N(S),q

lm (θ, φ) = mY
N(S),q

lm (θ, φ). (32c)

The indices N and S label the local coordinates in open neighbourhoods of north and south
poles as 0 � θ < π and 0 < θ � π , respectively. φ is auxiliary variable: 0 � φ < 2π . q is
the magnetic charge and it has been located at the origin of the spherical coordinate system.
In atomic units (m = e = h̄ = 1), Hamiltonian corresponding to the motion of a electron in
the presence of the magnetic charge q is irreducibly represented by monopole harmonics with
a given orbital momentum l:

HN(S)Y
N(S),q

lm (θ, φ) = l(l + 1)Y
N(S),q

lm (θ, φ), (33)

in which the explicit forms of Hamiltonians are as follows:

HN(S) = −1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− 1

sin2 θ

∂2

∂φ2
± 2iq

1 ± cos θ

∂

∂φ
+

2q2

1 ± cos θ
. (34)

All monopole harmonics corresponding to the quantum number l make an irreducible
representation of su(2) Lie algebra via relations (32). According to above discussions, p + 1
bosonic Hamiltonians

HN(S)
m = 1

2

[
L

N(S)
− LN(S)

+ + (2m − p − 1)L
N(S)
3

+ (p − 1)

(
m − 3

2
− (2p − 1)

¯̄β

6

)
− (m − 1)(m − 2)

]
1 � m �p + 1, (35)

satisfy the following eigenvalue equations on the magnetic monopole harmonics of the orbital
momentum l with limitation p � l for PSUSY order:

HN(S)
m Y

N(S),q

lm−1 (θ, φ) = 1

2

[
l2 − 1

2
(p − 2l − 1) − (p − 1)(2p − 1)

¯̄β

6

]
Y

N(S),q

lm−1 (θ, φ). (36)

Therefore, for a given energy, p+1 isospectrum Hamiltonians can be embedded in the extended
PSUSY algebra with p − 4 free parameters of βk’s.

6. Concluding remarks

There are many quantum-mechanical models whose solutions represent one of the real forms
of gl(2, c) Lie algebra symmetry. For example, the motion of a free or charged particle on a
sphere (or hyperbolic) surface in the absence or presence of a magnetic field of a monopole,
the motion of a charged particle on a two-dimensional flat plane in the presence of a uniform
magnetic field (Landau problem) or even one-dimensional models with the Morse and Pöschl–
Teller potentials. Existence of such symmetry leads to the fact that we can obtain the ground
state by solving a first-order differential equation; then, we may calculate the other states or
the representation space bases by using an algebraic method. In fact our knowledge about the
symmetry gives rise to a simplification in solving the quantum-mechanical problems so that it
is not necessary to integrate twice from the equation of motion. The description of symmetry
between bosons and parafermions by the representation space corresponding to one of the real
forms of the gl(2, c) Lie algebra can be used for many quantum-mechanical models.

Embedding gl(2, c) Lie algebra into the extended PSUSY algebra requires that in both
cases a = 0 and a �= 0, the positive integer p − 1 must be partitioned into p − 1 real parts βk
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which are not equal to each other necessarily. So in practice only for a = 0, not only p � 2
but also the number of free parameters must be equal to p − 2. In the case a �= 0, the integer
number 1

2p(p − 1) must also be partitioned into p − 1 real parts not necessarily equal to each
other through the product of the parameters βk with their labels, i.e. kβk . In fact constraint
(20) is an additional partition which must again be satisfied by the parameters β1, . . . , βp−1.
Therefore, the number of free parameters is reduced to p − 3 for the case a �= 0. For the cases
a = 0 and a �= 0, the energy spectra are functions from the mean value of the new parameters
with their label weight function and the weight function of squared label, respectively, say,
β̄ and ¯̄β. These functions generate p − 2 and p − 3 degrees of freedom in describing the
energy spectrum of the quantum systems possessing the symmetries of h4 and u(2) (u(1, 1))

Lie algebras, respectively. If a given value, for example unit, is demanded for β̄ and ¯̄β then,
the number of degrees of freedom will be p − 3 and p − 4, respectively.

In standard PSUSY, we have β1 = β2 = · · · = βp−1 = 1, so the mean functions are
equal to 1. Therefore, the algebraic relations of the standard PSUSY can be considered as
an occupied state from different algebraic modes. For instance, if we would like that the
occupation of the states with the same energy leads to the minimization of the number of
the terms in the multilinear parts (1a) and (1b), then the following relations (along with their
Hermitian conjugates) play the same role in realization of the algebra by the quantum solvable
models with the symmetry of gl(2, c) Lie algebras:

QpQ† +
(p − 1)(p − 2)(p − 3)

6
Q3Q†Qp−3 +

p − 1

6
(−2p2 + 13p − 18)Q2Q†Qp−2

+
p − 1

6
(p2 − 8p + 18)QQ†Qp−1 + Q†Qp = 2pQp−1H (37)

QpQ† +
p − 1

3
Qp−1Q†Q +

(p − 1)(p − 2)

6
Q2Q†Qp−2

+
(p − 1)(6 − p)

6
QQ†Qp−1 + Q†Qp = 2pQp−1H. (38)

Equations (37) and (38) along with their Hermitian conjugates present two different multilinear
behaviour of the parafermionic operators Q and Q† with respect to each other which can
be considered and occupied as different statistical modes. Nevertheless, their bosonic
Hamiltonians have the same energies. Moreover, it must be emphasized that the above
relations describe two different multilinear behaviour for the Heisenberg Lie algebra h4 since
in addition to equation (20), equation (2) is also satisfied. It is evident that the different modes
for the multilinear relations of the PSUSY algebra realized by the symmetries of u(2) and
u(1, 1) Lie algebras, include also h4 necessarily; however, its inverse is not true.

Actually, multilinear behaviour of the parafermions Q and Q† can be considered as a
superposition of all the modes consisting of choosing different values for the continuous
parameters β1, . . . , βp−1. Our investigations show that for the usual SUSY, one cannot
describe the bilinear relations by the parameters such as βk with the values other than 1. For
this reason in the SUSY associated with the usual Fermi and Bose statistics, there is a unique
bilinear relation between the supercharges Q and Q† while for the symmetry between bosons
and the parafermions of order p � 3, there is not such a restriction on the multilinear relation
of parasupercharges Q and Q†.
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